Dynamics, Controls


  • Department Teaching Laboratory

    The Lab F158 is an undergraduate teaching lab for MEEN 3240 Lab I and MEEN 3242 Lab II courses. The Lab is equipped with the following apparatus to offer MEE undergraduate students with hands-on experiments covering a broad spectrum of topics of in instrument and measurements, thermodynamics, fluid mechanics and heat transfer.

    Subsonic wind tunnel with completed modules (manometer, pitot tube, pressure cylinder, lift and drag balance, aerofoil, pressure wing, pressure cylinder and boundary layer plates). Computer controlled heat transfer teaching equipment (linear heat conduction, combined convection and radiation, extended surface heat transfer, unsteady state heat transfer, free & forced convection). Viscometer, cup viscometers, air viscosity measurement equipment, thermocouples, thermistor, RTD and data acquisition system.


    Faculty/Staff: Xiaohua Li
  • Photonics Micro-Devices Fabrication Laboratory
    • Sensor development
    • Instrumentation and flow diagnostics
    • Biomedical micro-devices
    Faculty/Staff: Maurizio Manzo
  • Senior Design Laboratory

    Senior Design is the capstone undergraduate design project of the Department of Mechanical and Energy Engineering. Seniors are able to apply their knowledge and showcase their abilities through the completion of challenging, real-world design problems. Students will research and select an issue, then design a project with the guidance of advisors and sponsors. In Design II, student ideas are brought to life by prototype construction, testing and final analysis. Senior Design culminates with Design Day, a college-wide event where teams from each engineering department present projects to engineering faculty members and industry leaders.



    Faculty/Staff: Mark Wasikowski
  • Smart Materials Laboratory

    The Smart Material Lab (SML) in the University of North Texas (UNT) is focused on design, analysis, and experiments for piezoelectric devices used for sensing, energy harvesting, and structure health monitoring applications. This group has conducted research in high-temperature material test methodology, modeling and experiment of novel sensing and energy harvesting mechanism, and structure health monitoring in harsh environments. The technology we have developed addresses critical national needs in the monitoring of power plants, manufacturing process and control, aerospace propulsion systems, oil and gas exploration, and other applications. The group’s research is funded by National Science Foundation (NSF), Army Research Office (ARO), Department of Defense (DoD), Department of Energy (DoE), Peterbuit, US Army Natic Program, USDA and UNT.

    Research Projects

    1) “Self-powered Wireless Through-wall Data Communication for Nuclear Environments,”  US Department of Energy
    2) “Energy harvesting nanorods-enhanced MEMS temperature-insensitive gas sensor for combustion monitoring and control,” National Science Foundation

    SML photo

    Faculty/Staff: Haifeng Zhang

News and publications